The Structures of Bis(2,2'-bipyridyl)mononitritocopper(II) Tetrafluoroborate Bis($\mathbf{2 , 2} \mathbf{2}^{\prime}$-bipyridyl)mononitritozinc(II) Nitrate

By Andrew Walsh, Bernadette Walsh, Brigid Murphy and Brian J. Hathaway \dagger
The Chemistry Department, University College, Cork, Ireland

(Received 2 October 1980; accepted 29 January 1981)

Abstract

The structures of $\operatorname{bis}\left(2,2^{\prime}\right.$-bipyridyl)mononitritocopper(II) tetrafluoroborate $\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}(\mathrm{ONO})\right]$ $\mathrm{BF}_{4}, \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{CuN}_{5} \mathrm{O}_{2}^{+} . \mathrm{BF}_{4}^{-}$(1), and bis(2, 2^{\prime}-bipyridyl)mononitritozinc(II) nitrate $\left[\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}$, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Zn}^{+}$. NO_{3}^{-}(2), have been determined by X-ray analysis. Both complexes crystallize in the monoclinic space group $P 2_{1} / n$ with, for (1), $a=$ 10.839 (3) , $\quad b=12.367(3), \quad c=16.219(3) \AA$, $\beta=105.25(5)^{\circ}, U=2097.5 \AA^{3}, Z=4, R=0.0468$ ($R_{w}=0.0566$) for 2769 unique reflections and, for (2), $a=11.27$ (5),$b=11.93$ (5), $c=15.49$ (6) \AA, $\beta=101 \cdot 2(2)^{\circ}, U=2042.7 \AA^{3}, Z=4, R=0.0953$ ($R_{w}=0.1033$) for 2083 unique reflections. Both complexes involve an $M \mathrm{~N}_{4} \mathrm{O}_{2}$ chromophore but while (1) has a ($4+1+1^{*}$)-type coordination involving a trigonal-bipyramidal stereochemistry with a squarepyramidal distortion with an elongation along one of the in-plane $\mathrm{Cu}-\mathrm{N}$ directions and an off-the-axis sixth O ligand, (2) involves a cis-distorted $\mathrm{ZnN}_{4} \mathrm{O}_{2}$ chromophore stereochemistry. The two structures may be related by a linear combination of the components of the E mode of vibration of the parent trigonaloctahedral tris(chelate)metal(II) structure.

Introduction

The nitrite ion is unique in the stereochemistry of the $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{O} X \mathrm{O})\right] Y$ complexes, where bpy $=2,2^{\prime}$-bipyridyl, in forming a cis-distorted octahedral Cu $\mathrm{N}_{4} \mathrm{OO}^{\prime}$ chromophore in bis(2,2'-bipyridyl)mononitritocopper(II) nitrate (Proctor \& Stephens, 1969). To obtain more information on this stereochemistry the crystal structure of $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{ONO})\right] \mathrm{BF}_{4}(1)$ has been determined and to obtain information on the electronic properties (Proctor, Hathaway, Billing, Dudley \& Nicholls, 1969; Hathaway, Proctor, Slade \& Tomlinson, 1969) of the $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{ONO})\right]^{+}$cation doped in the corresponding $\left[\mathrm{Zn}(\mathrm{bpy})_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}$ complex as a

[^0]host lattice, the crystal structure of $\left[\mathrm{Zn}(\mathrm{bpy})_{2}{ }^{-}\right.$ $(\mathrm{ONO})] \mathrm{NO}_{3}(2)$ has also been determined.

Experimental

Preparation

(1) was prepared by addition of an aqueous solution of excess $\mathrm{NaNO}_{2}(0.05 \mathrm{~mol}$ in 20 ml$)$ to a $1: 1$ aqueous alcohol solution (20 ml) $(0.01 \mathrm{~mol})$ of $\mathrm{Cu}(\mathrm{bpy})_{2}\left(\mathrm{BF}_{4}\right)$ (0.01 mol) (Hathaway, Proctor, Slade \& Tomlinson, 1969). Single crystals were obtained by carrying out the preparation at a much higher dilution, 200 ml . (Composition: found: $\mathrm{C}=46 \cdot 76, \mathrm{H}=3 \cdot 28, \mathrm{Cu}=12 \cdot 08$, $\mathrm{N}=13 \cdot 58 \% ; \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{CuN}_{5} \mathrm{O}_{2}^{+} . \mathrm{BF}_{4}^{-}$requires: $\mathrm{C}=$ $47 \cdot 21, \mathrm{H}=3 \cdot 15, \mathrm{Cu}=12 \cdot 50, \mathrm{~N}=13 \cdot 77 \%$.)

Crystals of (2) were prepared as reported by Proctor, Hathaway, Billing, Dudley \& Nicholls (1969) for the pure $\mathrm{Cu}^{\mathrm{II}}$ complex with the stoichiometric amount of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Large crystals were obtained if methanol rather than ethanol was used in the preparation. (Composition: found: $\mathrm{C}=49.07, \mathrm{H}=$ $3.52, \quad \mathrm{~N}=17.34, \quad \mathrm{Zn}=13.29 \% ; \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{5}$ $\mathrm{O}_{2} \mathrm{Zn}^{+} . \mathrm{NO}_{3}^{-}$requires: $\mathrm{C}=49 \cdot 44, \mathrm{H}=3 \cdot 29, \mathrm{~N}=$ $17 \cdot 30, \mathrm{Zn}=13 \cdot 46 \%$.)

Crystal data

The crystal and refinement data for (1) and (2) are summarized in the Abstract and in Table 1. For both complexes preliminary cell dimensions and space group were determined from precession photographs and for (1) refined on a Philips PW 1100 four-circle diffractometer. The intensities for (1) were collected on the diffractometer with graphite-monochromatized Mo $K \alpha$ radiation. A $\theta-2 \theta$ scan mode was used and reflections with $3^{\circ}<\theta<32^{\circ}$ in one quadrant were examined. A constant scan speed of $0.05^{\circ} \mathrm{s}^{-1}$ was used with a variable scan width of $(0.7+0.1 \tan \theta)^{\circ}$. With an acceptance criterion $I>2 \cdot 50 \sigma(I), 2769$ reflections were retained. The data for (2) were collected photographically with five-film packs on an equi-inclination Weissenberg goniometer. The data (integrated reflections) were estimated visually and 2083 unique reflec-
© 1981 International Union of Crystallography

Table 1. Additional crystal and refinement data

	$\stackrel{(1)}{\left.[\mathrm{Cu}(\mathrm{bpy}))_{2}(\mathrm{ONO})\right] \mathrm{BF}_{4}}$	$\stackrel{(2)}{\left[\mathrm{Zn}(\text { bpy })_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}}$
M_{r}	508.37	485.4
D_{m} (flotation) $\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.65	1.58
$D_{c}^{m}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.611	1.577
Radiation	Mo Ka	CuKa
$F(000)$	1028.0	984.0
$\mu\left(\mathrm{mm}^{-1}\right)$	1.059	1.916
Collection data	-	$h k(0-9), h 0{ }^{*}$
Number of unique reflections	2769	2083
Number of anisotropic atoms	36	37
Number of varied parameters	330	300
$R\left(=\sum \Delta / \Sigma\left\|F_{0}\right\|\right.$)	0.0468	0.0953
$R_{w}\left(=\sum w^{1 / 2} \Delta / \Sigma w^{1 / 2}\left\|F_{o}\right\|\right)$	0.0556	0.1033
k^{*}	1.000	1.9380
g	0.02002	0.006202
Maximum final shift/e.s.d.	0.05	0.02
Residual electron density (e A^{-3})	0.319	0.745

tions retained. Lorentz and polarization corrections were applied but no corrections for absorption or extinction were made.

Both structures were solved by Patterson and Fourier techniques and refined by blocked-matrix least squares, with anisotropic temperature factors for all the non-hydrogen atoms. The positions of the H atoms were calculated geometrically with $\mathrm{C}-\mathrm{H}=1.08 \AA$ and a fixed temperature factor of $0.07 \AA^{2}$ and floated on the adjacent C atoms. The refinements converged when the ratio of the maximum shift to e.s.d. was <0.05 for (1), and <0.02 for (2), with a weighting scheme, $w=$ $k /\left[\sigma^{2}\left(F_{o}\right)+g\left(F_{o}\right)^{2}\right]$ (Table 1). Complex neutral scattering factors (Cromer \& Liberman, 1970; Cromer \& Waber, 1965) were used for the non-hydrogen atoms

Table 2. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and $U_{\mathrm{eq}}\left(\AA^{2} \times 10^{3}\right)$

$$
U_{\mathrm{eq}}=\frac{1}{3} \sum_{l} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{l .} \mathbf{a}_{j} \text { for (1) and (2). }
$$

(1)

	x	y	z	$U_{\text {eq }}$	x	y	z	$U_{\text {eq }}$
* X	2445 (1)	560 (1)	3645 (1)	59	2395 (1)	508 (1)	1253 (1)	51
N(1)	2035 (3)	580 (2)	4771 (2)	90	2696 (7)	519 (5)	-62 (4)	49
C(1)	2569 (4)	-48 (3)	5438 (2)	85	2041 (10)	-54 (7)	-762 (6)	52
C(2)	2192 (5)	-56 (4)	6184 (3)	83	2425 (10)	-152 (7)	-1555 (5)	71
C(3)	1187 (5)	617 (3)	6235 (3)	84	3510 (10)	312 (6)	-1634 (6)	76
C(4)	641 (4)	1286 (3)	5561 (3)	78	4175 (9)	872 (7)	-939 (6)	96
C(5)	1079 (4)	1254 (3)	4828 (2)	48	3742 (8)	1005 (6)	-162 (5)	65
C(6)	566 (3)	1939 (3)	4067 (2)	53	4359 (8)	1643 (6)	613 (6)	66
C(7)	-315 (4)	2759 (3)	4023 (3)	96	5304 (9)	2364 (7)	592 (7)	67
C(8)	-733 (5)	3345 (3)	3268 (3)	100	5816 (11)	2939 (8)	1340 (9)	57
C(9)	-257 (5)	3104 (4)	2592 (3)	93	5386 (10)	2791 (8)	2120 (8)	49
C(10)	624 (4)	2275 (3)	2676 (3)	76	4448 (9)	2059 (7)	2094 (7)	55
N(2)	1020 (3)	1701 (2)	3387 (2)	62	3932 (6)	1499 (5)	1365 (4)	44
N(3)	2820 (3)	563 (2)	2499 (2)	63	2112 (7)	565 (5)	2586 (4)	52
C(11)	2163 (4)	-12 (4)	1830 (2)	65	2712 (10)	-45 (8)	3272 (6)	88
C(12)	2543 (5)	-108 (4)	1079 (3)	86	2288 (12)	-148(9)	4046 (6)	90
C(13)	3655 (5)	426 (3)	1037 (3)	101	1240 (11)	352 (8)	4118 (6)	78
C(14)	4320 (4)	1023 (3)	1715 (3)	103	613 (9)	1004 (7)	3434 (6)	69
C(15)	3889 (4)	1098 (3)	2448 (2)	72	1104 (8)	1096 (6)	2670 (5)	37
C(16)	4522 (3)	1749 (3)	3204 (2)	71	540 (8)	1805 (5)	1894 (5)	45
C(17)	5512 (4)	2461 (3)	3205 (3)	80	-363 (8)	2567 (6)	1921 (6)	73
C(18)	6000 (5)	3071 (4)	3945 (3)	80	-771 (9)	3237 (7)	1183 (7)	70
C(19)	5506 (5)	2960 (4)	4637 (3)	66	-284 (9)	3111 (7)	437 (6)	63
C(20)	4534 (4)	2223 (3)	4587 (3)	69	599 (9)	2314 (6)	460 (6)	63
N(4)	4056 (3)	1628 (3)	3890 (2)	59	990 (6)	1676 (5)	1152 (4)	47
N(5)	2658 (5)	-1643 (3)	3657 (2)	103	2095 (9)	-1684 (7)	1276 (5)	100
O(1)	3481 (4)	-908 (4)	3893 (2)	111	1256 (7)	-1026 (6)	1047 (5)	74
$\mathrm{O}(2)$	1583 (4)	-1289 (3)	3403 (2)	107	3134 (6)	-1215 (5)	1453 (4)	86
B(1)	2289 (5)	-1062 (5)	8685 (3)	73				
F(4)	3248 (4)	-456 (4)	9173 (2)	83				
F(1)	2710 (4)	-1741 (4)	8137 (3)	158				
F(2)	1685 (6)	-1624 (5)	9138 (3)	132				
$\mathrm{F}(3)$	1567 (8)	-346 (4)	8174 (4)	246				
$F\left(1^{\prime}\right)$	1155 (12)	-795 (13)	8921 (11)	139				
$\mathrm{F}\left(2^{\prime}\right)$	2627 (27)	-1888 (16)	9030 (14)	493				
$F\left(3^{\prime}\right)$	2191 (20)	-923 (17)	7946 (6)	72				
N(6)					2243 (7)	3842 (5)	$8746 \text { (4) }$	40 90
$\mathrm{O}(3)$					2843 (6)	4688 (5)	8727 (5)	90
O(4)					1187 (8)	3937 (7)	8831 (5)	85
O(5)					2674 (9)	2966 (7)	8676 (9)	195

[^1]and those for the heavy atoms were corrected for anomalous dispersion. All calculations were carried out with SHELX 76 (Sheldrick, 1976), XANADU (G. M. Sheldrick), PLUTO (W. D. S. Motherwell), and XPUB (R. Taylor), on an IBM 370/138 computer. The final non-hydrogen atomic coordinates are given in Table 2, the bond distances and angles in Table 3, and some mean planes in Table 4. Fig. 1 illustrates the local molecular structure and atom numbering.*

Discussion

Description of crystal structures

The structures of (1) and (2) consist of discrete $\left[M(\mathrm{bpy})_{2}(\mathrm{ONO})\right]^{+}$cations and BF_{4}^{-}and NO_{3}^{-}anions,

[^2]respectively. The unit cells of (2) and $\left[\mathrm{Cu}(\text { bpy })_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}$ (Proctor \& Stcphens, 1969) are isomorphous with unit-cell parameters which are as near equivalent as they can be for a Zn^{11} complex (d^{10}) and a Cu^{11} complex (d^{9}) (Table 5), with comparable packing of the $\left[M(b p y)_{2}(\mathrm{ONO})\right]^{+}$cations and NO_{3}^{-} anions. Neither complex has any unusual features in the bond lengths or angles of the bpy ligands (Stephens, 1969). In (1) the BF_{4}^{-}ion showed evidence of disorder (Stynes \& Ibers, 1971), which was best represented by two interpenetrating BF_{4} tetrahedra with the B and $F(4)$ atoms common; the site-occupation factor was initially set at 0.5 but refined to 0.75 for $F(1)-F(3)$ and was then fixed. There were no unusual features in either the bond lengths or angles of the nitrate ion (Addison, Logan, Wallwork \& Garner, 1971) of (2). There was no evidence for semi-coordination (Proctor, Hathaway \& Nicholls, 1968) of either the BF_{4}^{-}ion in (1) or the NO_{3}^{-}ion in (2) to the $M \mathrm{~N}_{4} \mathrm{O}_{2}$ chromophores.

The stereochemistry of the $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{ONO})\right]^{+}$ cation of (1) is basically five-coordinate (Barclay,

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Table 4. Equations of least-squares planes in the form $l X+m Y+n Z=p$, where X, Y and Z are a set of orthogonal axes

Deviations (\AA) of relevant atoms from the planes are given in square brackets.

$$
\begin{array}{llll}
l & m & n & p
\end{array}
$$

(a) Complex (1) (e.s.d.'s $0.001-0.003 \AA$)

Plane (1): $N(1), C(1)-C(5)(r . m . s$ d deviation 0.0077$)$

$$
\begin{array}{lll}
0.6633 & 0.7181 & 0.2105
\end{array}
$$

3.4409

$$
[C(3)-0.0124, C(2) 0.0093, N(1)-0.0077]
$$

Plane (2): $N(2), C(6)-C(10)$ (r.m.s. deviation 0.0038$)$

$$
\begin{array}{llll}
0.7454 & 0.6520 & 0.1387 & 2.8942
\end{array}
$$

[$\mathrm{N}(2)-0.0060, \mathrm{C}(10) 0.0039]$
Plane (3): $N(1), C(1)-C(10), N(2)$ (r.m.s. deviation 0.0620$)$ $\begin{array}{llll}0.7060 & 0.6862 & 0.1754 & 3.1919\end{array}$ [$\mathrm{N}(2)-0.0829, \mathrm{C}(1) 0.0824, \mathrm{C}(7) 0.0771]$
Plane (4): $\mathrm{N}(3), \mathrm{C}(11)-\mathrm{C}(15)$ (r.m.s. deviation 0.0058)

$$
\begin{array}{llll}
-0.5431 & 0.8059 & -0.2358 & -1.7975
\end{array}
$$

[$\mathrm{N}(3)-0.0090, \mathrm{C}(15) 0.0085]$
Plane (5): $\mathrm{C}(16)-\mathrm{C}(20), \mathrm{N}(4)$ (r.m.s. deviation 0.0054)

$$
\begin{array}{llll}
0.6714 & -0.7168 & 0.1881 & 2.3678
\end{array}
$$

$$
[C(16)-0.0082, C(19)-0.0064]
$$

Plane (6): $\mathrm{N}(3), \mathrm{C}(11)-\mathrm{C}(20), \mathrm{N}(4)$ (r.m.s. deviation 0.0795$)$

$$
\begin{array}{llll}
0.6075 & -0.7662 & 0.2093 & 1.9907
\end{array}
$$

$$
[\mathrm{N}(4) 0 \cdot 1221, \mathrm{C}(11)-0 \cdot 1129, \mathrm{C}(14) 0 \cdot 1090]
$$

Plane (7): $\mathrm{Cu}, \mathrm{N}(2), \mathrm{N}(4), \mathrm{O}(1)$ (r.m.s. deviation 0.0142)

$$
\begin{array}{llll}
0.0145 & 0.0486 & 0.9987 & 5.3028
\end{array}
$$

$$
[\mathrm{Cu}-0.0239, \mathrm{~N}(2) 0.0107]
$$

Plane (8): $\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3), \mathrm{O}(1)$ (r.m.s. deviation 0.1334)

$$
\begin{array}{llll}
0.7699 & 0.6174 & 0.1618 & 3.0995
\end{array}
$$

$[\mathrm{N}(1) 0 \cdot 1401, \mathrm{~N}(2)-0 \cdot 1376, \mathrm{~N}(3) 0 \cdot 1265$
$\mathrm{O}(1)-0.1290, \mathrm{Cu} 0.1404]$
Plane (9): $\mathrm{N}(5), \mathrm{O}(1), \mathrm{O}(2)$

$$
\begin{array}{llll}
-0.1140 & -0.0537 & 0.9920 & 4.9245
\end{array}
$$

Dihedral angles $\left({ }^{\circ}\right)$ between planes (e.s.d.'s $0.4-1 \cdot 3^{\circ}$): 1-2, 7.31; 4-5, 9.37; 3-6, 93.45; 7-9, 9.4; 8-9, 87.7.
(b) Complex (2) (e.s.d.'s $0.001-0.003 \AA$)

Plane (1): $\mathrm{N}(1), \mathrm{C}(1)-\mathrm{C}(5)$ (r.m.s. deviation 0.0144)

$$
\begin{array}{llll}
-0.4764 & 0.8438 & -0.2472 & -0.7180
\end{array}
$$

[C(5) 0.0233, C(4) $-0.0177, C(2) 0.0144]$
Plane (2): C(4)-C(5), $N(2)$ (r.m.s. deviation 0.0025)

$$
\begin{array}{llll}
0.6483 & -0.7490 & 0.1364 & 1.6540
\end{array}
$$

[$\mathrm{N}(2) 0.0043$]

$$
\begin{array}{cccc}
-0.5683 & 0.7990 & -0.1967 & -1.1543
\end{array}
$$

$$
[C(4)-0 \cdot 1705, C(8) 0 \cdot 1439, C(1) 0 \cdot 1407)]
$$

Plane (4): $\mathrm{N}(3), \mathrm{C}(11)-\mathrm{C}(15)$ (r.m.s. deviation 0.0114$)$
$\begin{array}{llll}0.5205 & 0.8080 & 0.2761 & 2.7526\end{array}$
$[C(15) 0.0144, C(12) 0.0136, N(3)-0.0142]$

Table 4 (cont.)
Plane (5): $\mathrm{C}(16)-\mathrm{C}(20), \mathrm{N}(4)$ (r.m.s. deviation 0.0080) $\begin{array}{llll}0.6972 & 0.6846 & 0.2125 & 2.4748\end{array}$
[C(16) 0.0139, N(4) -0.0097]
Plane (6): $\mathrm{N}(3), \mathrm{C}(11)-\mathrm{C}(20), \mathrm{N}(4)$ (r.m.s. deviation 0.1087$)$

$$
\begin{array}{llll}
0.6106 & 0.7540 & 0.2421 & 2.7224
\end{array}
$$

[$\mathrm{N}(4)-0 \cdot 1669, \mathrm{C}(18) 0 \cdot 1533, \mathrm{C}(11) 0 \cdot 1513]$
Plane (7): $\mathrm{N}(1)-\mathrm{N}(4)$ (r.m.s. deviation 0.6244)
$\begin{array}{llll}0.0720 & 0.9974 & 0.0012 & 1.4623\end{array}$
$[\mathrm{N}(1)-0.6309, \mathrm{~N}(2) 0.6359, \mathrm{~N}(3)-0.6177$, $\mathrm{N}(4) 0.6126, \mathrm{Zn}-0.6655]$
Plane (8): $\mathrm{N}(1)-\mathrm{N}(3), \mathrm{O}(1)$ (r.m.s. deviation $0 \cdot 1930)$

$$
\begin{array}{llll}
0.7138 & -0.6890 & 0.1256 & 1.8234
\end{array}
$$

$[\mathrm{N}(1)-0.2088, \mathrm{~N}(2) 0.2047, \mathrm{~N}(3)-0.1761$, $\mathrm{O}(1) 0 \cdot 1803, \mathrm{Zn}-0.1731]$

Plane (9): $N(5), O(1), O(2)$
$\begin{array}{llll}-0.0923 & 0.1067 & 0.9900 & 1.0746\end{array}$
Plane (10): $\mathrm{Zn}, \mathrm{N}(2), \mathrm{N}(4), \mathrm{O}(1)$ (r.m.s. deviation 0.0324)

$$
\begin{array}{llll}
0.0877 & -0.0560 & 0.9946 & 1.5520
\end{array}
$$

$$
[\mathrm{Zn} 0.0551, \mathrm{~N}(2)-0.0242, \mathrm{O}(1)-0.0222]
$$

Dihedral angles $\left({ }^{\circ}\right)$ between planes (e.s.d.'s $0 \cdot 4-1 \cdot 3^{\circ}$): $1-2,12 \cdot 94$;
4-5, 12.90; 3-6, 78.01; 9-10, 13.94.

Fig. 1. The molecular structure of the $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{ONO})\right]^{+}$cation and the atom numbering.

Table 5. The unit-cell data for (a) $\left[\mathrm{Zn}(\mathrm{bpy})_{2}(\mathrm{ONO})\right]-$ NO_{3} and (b) $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}$ (space group $P 2_{1} / n$)

$$
\mathrm{Zn}
$$

$a(\AA)$	$11.27(5)$	11.101
$b(\AA)$	$11.93(5)$	12.058
$c(\AA)$	$15.49(5)$	15.385
$\beta\left({ }^{\circ}\right)$	$101.2(2)$	99.17

Table 6. The local molecular structures (\AA and ${ }^{\circ}$) of sciiia

	$\begin{gathered} {\left[\mathrm{Cu}(\mathrm{bpy})_{2}\right.} \\ (\mathrm{ONO})]^{-} \\ \mathrm{BF}_{4} \end{gathered}$	$\begin{gathered} \left(\mathrm{Zn}(\mathrm{bpy})_{2}-\right. \\ (\mathrm{ONO})]_{-} \\ \mathrm{NO}_{3} \end{gathered}$	$\begin{gathered} {\left[\mathrm{Cu}(\mathrm{bpy})_{)^{-}}\right.} \\ (\mathrm{ONO})]^{-} \\ \mathrm{NO}_{3} \end{gathered}$	$\begin{aligned} & {\left[\mathrm{Cu}(\text { bipyam })_{2}-\right.} \\ & (\mathrm{ONO})]- \\ & \mathrm{NO}_{2} \end{aligned}$	$\begin{gathered} {\left[\mathrm{Cu}(\text { bpy })_{2}-\right.} \\ \left.\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right]- \\ \mathrm{BF}_{4} \end{gathered}$	$\begin{aligned} & {\left[\mathrm{Cu}(\text { bpy })_{2}-\right.} \\ & \left.\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right]- \\ & \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \end{aligned}$
	(1)	(2)	(3)	(4)	(5)	(6)
Reference	Present	Present	(a)	(b)	(c)	(c)
$\boldsymbol{M}-\mathrm{N}(1)$	1.990 (5)	2.129 (9)	1.980 (11)	2.008 (8)	1.995 (6)	1.971 (5)
$M-\mathrm{N}(2)$	2.053 (5)	2.077 (9)	2.065 (10)	2.095 (9)	2.033 (5)	2.056 (5)
M-N(3)	2.005 (5)	2.151 (9)	2.006 (10)	2.008 (8)	2.016 (5)	1.994 (5)
$\boldsymbol{M}-\mathrm{N}(4)$	2.141 (5)	2.092 (9)	$2 \cdot 100$ (10)	2.095 (9)	2.209 (6)	$2 \cdot 168$ (5)
M-O(1)	2.117 (6)	$2 \cdot 217$ (9)	$2 \cdot 238$ (10)	2.074 (16)	1.980 (4)	2.031 (5)
$\mathrm{M}-\mathrm{O}(2)$	2.463 (6)	2.223 (8)	2.329 (10)	2.551 (26)	2.785 (5)	2.648 (5)
$X-\mathrm{O}(1)$	1.261 (7)	1.227 (13)	1.234 (13)	1.262 (40)	1.270 (6)	1.238 (5)
$X-\mathrm{O}(2)$	1.211 (7)	1.278 (13)	1.207 (13)	1.228 (40)	1.252 (7)	1.241 (5)
α_{1}	164.5	153.9	157.8	162.9	156.5	147.6
α_{2}	97.4	97.5	99.2	96.5	92.5	$100 \cdot 7$
α_{3}	98.4	$103 \cdot 5$	103.0	$100 \cdot 5$	111.0	111.6
$\mathrm{O}(1)-X-\mathrm{O}(2)$	112.6	113.9	111.9	118.6	122.2	122.8
$\mathrm{O}(1)-M-\mathrm{O}(2)$	52.7	56.5	52.5	54.0	52.0	52.0
$\triangle \mathrm{N}$	0.088 (6)	0.015	$0 \cdot 035$ (20)	$0 \cdot 0$	$0 \cdot 176$ (10)	$0 \cdot 112$ (10)
40	0.346 (8)	0.006	0.091 (20)	$0 \cdot 0$	$0 \cdot 805$ (10)	$0 \cdot 617$ (10)

References: (a) Proctor \& Stephens (1969); (b) Chen \& Fackler (1980); Power \& Hathaway (1980); (c) Hathaway, Ray, Kennedy, (f) Simmons, Seff, Clifford \& Hathaway (1980); (g) Walsh, Power \& Hathaway

Hoskins \& Kennard, 1963), but with the second O atom of the nitrite group occupying the sixth coordinate position at a distance $>2.4 \AA$ to give a ($4+1+1^{*}$)type coordination (Hathaway, 1973). The $\mathrm{CuN}_{4} \mathrm{O}$ chromophore involves a very distorted stereochemistry intermediate between trigonal bipyramidal and square pyramidal, but still related to the more usual distorted trigonal-bipyramidal stereochemistry of the $\left[\mathrm{Cu}(\mathrm{bpy})_{2} X\right] Y$ complexes (Barclay, Hoskins \& Kennard, 1963; Stephens \& Tucker, 1973; Kaiser, Brauer, Schroder, Taylor \& Rasmussen, 1974; Harrison, Hathaway \& Kennedy, 1979; Hathaway \& Murphy, 1980), with the mean planes of the bpy ligands inclined at $c a 120^{\circ}$ to each other. The axial $\mathrm{Cu}-\mathrm{N}(1)$ and $\mathrm{Cu}-\mathrm{N}(3)$ distances are not significantly different, mean $1.999 \AA$, and the $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3)$ angle is $178 \cdot 6^{\circ}$. The mean in-plane $\mathrm{Cu}-\mathrm{N}$ distance $2.097 \AA$ is significantly longer than the mean out-of-plane $\mathrm{Cu}-\mathrm{N}$ distance $1.997 \AA$ by ca $0.1 \AA$ as previously reported (Huq \& Skapski, 1971) for the trigonal-bipyramidal $\mathrm{Cu}^{\mathrm{II}}$ stereochemistry. Nevertheless, the in-plane $\mathrm{Cu}-\mathrm{N}$ distances are significantly different with $\Delta \mathrm{N}=$ $\{[\mathrm{Cu}-\mathrm{N}(4)]-[\mathrm{Cu}-\mathrm{N}(2)]\}=0.088 \AA$. The in-plane $\mathrm{Cu}-\mathrm{O}(1)$ distance of $2 \cdot 117 \AA$ is significantly longer than the normal short $\mathrm{Cu}-\mathrm{O}$ distance (Hathaway \& Hodgson, 1973) of $c a 2.00 \AA$. This difference ($0.11 \AA$) could also be associated with the increase of $0.1 \AA$ for the in-plane $\mathrm{Cu}-L$ distance in the trigonal-bipyramidal stereochemistry (see later).

There are no unusual out-of-the-trigonal-plane angular distortions, values $90 \pm 10^{\circ}$, but the in-plane angles do show divergences from the 120° of a
regular trigonal-bipyramidal stereochemistry: the $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(2)$ angle is significantly $>120^{\circ}\left(164.5^{\circ}\right)$, while the $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(4)$ and $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(4)$ angles, 98.4 and 97.4° respectively, are almost equal, but significantly $<120^{\circ}$ and together amount to a very substantial distortion of the trigonal plane. As the large $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(2)$ angle is opposite the elongated $\mathrm{Cu}-\mathrm{N}(4)$ direction, it could be taken as the basal angle of a square-pyramidal stereochemistry with the $\mathrm{Cu}-\mathrm{N}(4)$ direction the elongation direction, especially in view of the near equivalence of the $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(4)$ and $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(4)$ angles. Nevertheless, the squarepyramidal stereochemistry of (1) is not regular \{as in $\mathrm{K}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{5}\right]\left(\mathrm{PF}_{6}\right)_{3}$ (Duggan, Ray, Hathaway, Tomlinson, Brint \& Pelin, 1979), which has almost equal basal angles of $\left.166 \pm 1^{\circ}\right\}$, but has a clear trigonal distortion of the $\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3), \mathrm{O}(1)$ plane with $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3)=178 \cdot 6^{\circ}$ and $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(2)=$ 164.5°, which results in a large r.m.s.d. of $0.133 \AA$, compared to $0.0105 \AA$ in the corresponding basal plane of $\mathrm{K}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{5}\right]\left(\mathrm{PF}_{6}\right)_{3}$.
In (1) the $\mathrm{Cu}-\mathrm{N}(4)$ elongation is restricted by the out-of-plane bite of the $\mathrm{N}(3) / \mathrm{N}(4)$ bpy ligand, to a bite angle of $80 \pm 1^{\circ}$, as in symmetrically coordinated bpy ligands (Harrison \& Hathaway, 1978). It has been suggested (Anderson, 1972) that when the bpy ligand is coordinated to a $\mathrm{Cu}^{\text {II }}$ ion involved in significant elongation in one of the $\mathrm{Cu}-\mathrm{N}$ bond distances the bite angle can decrease to ca 74° and the dihedral angle between the pyridine rings can increase up to 31.3°. In (1) the bite angles are 80.8 and 79.4° for the $\mathrm{N}(1) / \mathrm{N}(2)$ and $N(3) / N(4)$ bpy ligands, respectively, and the
.opper((II) and zinc(II) $\left.[M \text { (chelate) })_{2}(\mathrm{OXO})\right] Y$-type complexes

$\begin{aligned} & {\left[\mathrm{Cu}(\text { bipyam })_{2-}^{-}\right.} \\ & \left.\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right]- \\ & \mathrm{NO}_{3} \end{aligned}$	$\begin{gathered} {\left[\mathrm{Cu}(\text { phen })_{2-}\right.} \\ (\mathrm{ONO})]^{-} \\ \mathrm{BF}_{4} \end{gathered}$	$\begin{gathered} {\left[\mathrm{Cu}(\mathrm{phen})_{2}-\right.} \\ \left.\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right]- \\ \left.\mathrm{ClO}_{4}\right) \end{gathered}$	$\begin{aligned} & {\left[\mathrm{Cu}(\mathrm{phen})_{2}-\right.} \\ & \left.\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right]- \\ & \mathrm{BF}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{gathered} {[\mathrm{Zn} \text { (bipyam) })_{-}^{-}} \\ \text {(ONO)]- } \\ \mathrm{NO}_{2} \end{gathered}$	$\begin{gathered} {\left[\mathrm{Zn}(\text { bipyam })_{2}-\right.} \\ \left.\left(\mathrm{ONO}_{2}\right)\right]- \\ \mathrm{NO}_{3} \end{gathered}$	$\begin{aligned} & {\left[\mathrm{Cu}_{2}(\text { bpy })_{2}-\right.} \\ & \text { (pydca) }]^{--} \\ & 4 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{Cu}(\text { bipyam })_{2^{-}}\right.} \\ & (\mathrm{ONO})]^{-} \\ & \mathrm{BF}_{4} \end{aligned}$
(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
(d)	(e)	(f)	(e)	(b)	(g)	(h)	(d)
2.012 (5)	1.999 (4)	1.994 (4)	2.000 (4)	$2 \cdot 163$	2.116	1.986	1.986
2.032 (6)	2.048 (4)	2.098 (4)	$2 \cdot 123$ (4)	2.069	2.061	2.062	2.023
2.010 (5)	2.019 (3)	2.006 (4)	2.000 (4)	2.163	2.130	1.985	2.012
$2 \cdot 158$ (6)	2.167 (3)	$2 \cdot 130$ (4)	$2 \cdot 123$ (4)	2.069	2.058	2.115	2.139
2.029 (6)	2.072 (3)	2.220 (4)	2.261 (5)	2.22	2.221	2.029	$2 \cdot 111$
2.673 (6)	2.597 (3)	2.421 (5)	2.261 (5)	$2 \cdot 22$	2.326	2.866	2.550
1.271 (9)	1.254 (6)	1.175 (6)	1.233	1.227	1.264	-	1.289
1.247 (9)	1.207 (7)	$1 \cdot 160$ (6)	1.233	1.227	1.248	-	1.219
161.3	154.5	154.7	150.4	154.0	151.4	108.7	163.4
99.8	93.2	91.1	95.0	$100 \cdot 0$	101.8	112.4	93.4
98.9	112.1	114.1	114.7	104.6	$106 \cdot 9$	$138 \cdot 9$	$102 \cdot 8$
125.5	113.4	121.7	117.0	114.4	$116 \cdot 1$	-	112.9
53.9	50.7	52.1	55.4	55.4	55.8	-	5
$0 \cdot 126$ (12)	0.119	0.032 (8)	0.0	$0 \cdot 0$	0.003	0.053	0.116
$0 \cdot 644$ (12)	0.525	$0 \cdot 201$ (10)	0.0	$0 \cdot 0$	0.005	0.837	0.439

J'Brien \& Murphy (1980); (d) Kasempimolporn, Tyagi \& Hathaway (1980); (e) Simmons, Lundeen, Payne, Seff \& Hathaway (1980); 1981); (h) Nardin, Randaccio, Bonomo \& Pizzarelli (1980).
dihedral angles 7.28 and 9.36°, respectively, both less than the 11° previously (Anderson, 1972) reported for coordinated bpy ligands, which suggests that the bpy ligands in (1) are not strained by elongation of the $\mathrm{Cu}-\mathrm{N}$ bond distance.

The nitrite group (Sutton, 1959, 1965) of (1) has no unusual bond lengths or angles, and the plane of the $\mathrm{O}(1) \mathrm{N}(5) \mathrm{O}(2)$ group is reasonably coplanar $\left(9.4^{\circ}\right)$ with the $\mathrm{Cu}, \mathrm{N}(2), \mathrm{N}(4), \mathrm{O}(1)$ plane. Due to the $\mathrm{O}(1)-$ $\mathrm{Cu}-\mathrm{O}(2)$ bite angle of $52.7^{\circ}, \mathrm{O}(2)$ lies well off the perpendicular to the $\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3), \mathrm{O}(1)$ plane by $30 \cdot 1^{\circ}$ [a direction to which the $\mathrm{Cu}-\mathrm{N}(4)$ bond makes an angle of 11.0° in the $\mathrm{Cu}, \mathrm{N}(1), \mathrm{N}(3), \mathrm{N}(4)$ plane] and at a distance of $2.46 \AA$, sufficiently close to the Cu atom to be involved in significant off-the-axis coordination (Hathaway, 1973). The mean N-O distance, $1.24 \AA$, of the nitrite group is not significantly different (Sutton, 1959, 1965) from the $1 \cdot 236 \AA$ for the free nitrite ion, but the $\mathrm{O}(1)-\mathrm{N}-\mathrm{O}(2)$ angle of 112.6° is significantly smaller than the 115.4° of the free ion. There is a significant difference between the two $\mathrm{N}-\mathrm{O}$ distances, 1.261 (7) and 1.211 (7) \AA, consistent with the presence of more single-bond character (Addison, Logan, Wallwork \& Garner, 1971) in the $\mathrm{N}(5)-\mathrm{O}(1)$ distance, and with the shorter bonding of $O(1)$ to the Cu atom. Consequently, the asymmetric bonding role of the chelate nitrito group in (1) is reflected in the asymmetry of the $\mathrm{N}-\mathrm{O}$ distances of the nitrite group, and implies that, despite the relative shortness of the $\mathrm{Cu}-\mathrm{O}(2)$ distance of $2.463 \AA$, the bonding at this distance will be less than the bonding of $\mathrm{Cu}-\mathrm{O}(1)$ at $2 \cdot 117 \AA$. This situation contrasts with that in the
bonding of acetate (Hathaway, Ray, Kennedy, O'Brien \& Murphy, 1980) and formate (Fitzgerald \& Hathaway, 1980) ligands in these $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{OXO})\right] Y$-type complexes.

The structure of (1) is clearly different from the symmetrical elongated rhombic-octahedral (4+2) chromophore in $\left[\mathrm{Cu}(\mathrm{bpy})_{2}\left(\mathrm{~S}_{3} \mathrm{O}_{6}\right)\right]$ (Ferrari, Fava \& Pelizzi, 1977) and $\left[\mathrm{Cu}(\mathrm{bpy})_{2}\left(\mathrm{~S}_{4} \mathrm{O}_{6}\right)\right]$ (Harrison \& Hathaway, 1978) and the unsymmetrical rhom-bic-octahedral $\left(4+1+1^{*}\right)$ chromophore of $\left[\mathrm{Cu}(\mathrm{bpy})_{2}\left(\mathrm{ClO}_{4}\right)_{2}\right]$ (Nakai, 1971). There is some similarity to the cis-distorted rhombic-octahedral stereochemistries of Table 6, namely (3), (4) and (10), but in which the nitrito group is more symmetrically coordinated with two $\mathrm{Cu}-\mathrm{O}$ distances of 2.22-2.33 \AA, all of which are clearly elongated compared with the short $\mathrm{Cu}-\mathrm{O}$ of $2 \cdot 117 \AA$ in (1). There is a closer similarity to the remaining $\mathrm{Cu}^{\mathrm{II}}$ structures of Table 6 , all of which have a $\left(4+1+1^{*}\right)$-type coordination of the $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore with the second O atom involved in a bonding direction off the approximate $\mathrm{Cu}-\mathrm{N}(4)$ axis, but with significant differences in the trigonal in-plane bonding distances of $\{[\mathrm{Cu}-\mathrm{N}(4)]-$ $[\mathrm{Cu}-\mathrm{N}(2)]\}$ and $\{[\mathrm{Cu}-\mathrm{O}(2)]-[\mathrm{Cu}-\mathrm{O}(1)]\}$. If these differences, $\Delta \mathrm{N}$ and $\Delta \mathrm{O}$ (Table 6), are plotted against each other (Fig. 2) a significant correlation is observed; the greater $\Delta \mathrm{N}$, the greater the value of $\Delta \mathrm{O}$. This also implies that the greater the $\mathrm{Cu}-\mathrm{N}(4)$ distance the greater will be the $\mathrm{Cu}-\mathrm{O}$ (2) distance and suggests that even for the large $\mathrm{Cu}-\mathrm{O}$ (2) distances of ca $2 \cdot 8 \AA, \mathrm{O}$ (2) must still be involved in weak off-the-axis bonding and that the OXO^{-}anions of Table 6 are involved in a

Fig. 2. Correlation of the $\Delta \mathrm{N}\{[\mathrm{Cu}-\mathrm{N}(4)]-[\mathrm{Cu}-\mathrm{N}(2)]\}$ and $\Delta \mathrm{O}$ $\{[\mathrm{Cu}-\mathrm{O}(2)]-[\mathrm{Cu}-\mathrm{O}(1)]\}$ distances (\AA).

(a)

(b)

Fig. 3. The alternative routes for distortion towards squarepyramidal of (a) a trigonal-bipyramidal $\left[\mathrm{Cu}(\mathrm{bpy})_{2} L\right] Y$ system and (b) a cis-distorted octahedral $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{ONO})\right] Y$ system.
synergic bidentate function, with the bonding in the $\mathrm{Cu}-\mathrm{N}(4)$ direction.

It has already been suggested (Harrison \& Hathaway, 1980) that the sense of distortion of the regular trigonal-bipyramidal stereochemistry of a $\left[\mathrm{Cu}(\mathrm{bpy})_{2} L\right] Y$ system (Fig. 3a) can take the two alternative routes (A) and (B), related by the mechanistic pathway of the Berry (1960) twist, both of which result in a square-pyramidal distortion but with elongation in two different directions, due to the presence of non-equivalent ligands, namely, the $\mathrm{Cu}-L$ and $\mathrm{Cu}-\mathrm{N}(4)$ directions. These differences have been illustrated for a series of cation distortion isomers (Ray, Hulett, Sheahan \& Hathaway, 1978), where $L=\mathrm{Cl}$ (Elliott, Hathaway \& Slade, 1966; Kennedy, Ray, Sheahan, Power \& Hathaway, 1980) and $L=\mathrm{H}_{2} \mathrm{O}$ (Harrison, Hathaway \& Kennedy, 1979; Harrison \& Hathaway, 1979). Comparable modes of distortion of the $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{OXO})\right] Y$ system can also be suggested (Fig. 3b), involving the two alternative modes of distortion (C) and (D), which nicely describe the range of structural situations observed in Table 6, from symmetrical cis-distorted octahedral to a ($4+1+1^{*}$)type distortion (D), involving a very asymmetrically

Fig. 4. The two components of the E-type mode of vibration of a regular tris(chelate)metal(II) complex.
bonded OXO^{-}anion plus a long $\mathrm{Cu}-\mathrm{N}(4)$ distance. In this respect the $\mathrm{OXO} \mathrm{O}^{-}$anion may be considered to occupy a single coordinate position in the fivecoordinate $\left[\mathrm{Cu}(\mathrm{bpy})_{2} L\right] Y$ system as was suggested previously (Proctor, Hathaway, Billing, Dudley \& Nicholls, 1969), but there are advantages in considering these $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{OXO})\right]^{+}$systems as genuinely sixcoordinate and based upon a parent tris(chelate)copper(II) complex, whose E-type mode of vibration is illustrated in Fig. 4. Mode (IB) accounts for the elongation of a cis-distorted bis(chelate) 2^{-} (OXO)copper(II) complex (Fig. 3b) as in (4) and (10) (Table 6), while mode (IIB) accounts for the extreme square-pyramidal distortion (D) (Fig. 3b), involving very asymmetric coordination of one chelate OXO group along with elongation of the trans $\mathrm{N}(4)$ atom of the bpy ligand and as illustrated in (5) and (13) (Table 6). In general, the pure extreme modes (IB) and (IIB) do not occur separately, but as a linear combination of modes ($\mathrm{I} B$) and (IIB), so that intermediate degrees of distortion occur determined by packing factors and resulting in a range of observed distortions, (1), (3), (6)-(9) and (14) (Table 6), which illustrates the plasticity effect (Gazo et al., 1976) in the stereochemistry of the $\mathrm{Cu}^{1 \mathrm{I}}$ ion and which relate (1) and (3) as cation distortion isomers of the $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{ONO})\right]^{+}$cation.

The $\left(4+1+1^{*}\right)$-type coordination of the $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{O} X \mathrm{O})\right]^{+}$system has been observed previously (Nardin, Randaccio, Bonomo \& Rizzarelli, 1980) in one of the two Cu geometries of $\left[\mathrm{Cu}_{2}(\text { bpy })_{2}(\text { pydca })_{2}\right] .4 \mathrm{H}_{2} \mathrm{O}$ (13) (see Table 6 for structural data; pydca $=2,6$-pyridinedicarboxylate). The $\mathrm{CuN}_{4} \mathrm{O}_{2}$ geometry is closely comparable to that of (6) (Table 6), but with the $\mathrm{Cu}-\mathrm{O}(2)$ distance, $2.866 \AA$, significantly longer: if the $\Delta \mathrm{N}$ and $\Delta \mathrm{O}$ values of (13), 0.053 and $0.837 \AA$, are plotted in Fig. 2 the point for (13) lies clearly away from the observed correlation. The reason for this lies in the geometric factor introduced in the $0 X O$ group which forms part of a 2,6-pyridinedicarboxylate anion and is constrained by the geometry of this ligand to bond with a much longer $\mathrm{Cu}-\mathrm{O}$ (2) distance than observed in the majority of complexes of Table 6 whose $\mathrm{O} X \mathrm{O}$ groups involve no such constraints.

The $\left[\mathrm{Zn}(\mathrm{bpy})_{2}(\mathrm{ONO})\right]^{+}$cation of (2) involves a six-coordinate cis-octahedral $\mathrm{ZnN}_{4} \mathrm{O}_{2}$ chromophore
with the two $\mathrm{Zn}-\mathrm{O}$ bonds clearly elongated, mean $2.22 \AA$, and significantly longer than the four $\mathrm{Zn}-\mathrm{N}$ distances, mean $2 \cdot 11 \AA$ (Table 6). The individual bpy ligands are unsymmetrically coordinated with the $\mathrm{Zn}-\mathrm{N}$ distances significantly different, but the corresponding $\mathrm{Zn}-\mathrm{N}$ bonds of the two bpy ligands are not significantly different, mean 2.08 and $2.15 \AA$, such that the cis-distorted $\mathrm{ZnN}_{4} \mathrm{O}_{2}$ chromophore has an approximate C_{2} axis of symmetry bisecting the $\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(2)$ and $N(2)-\mathrm{Zn}-\mathrm{N}(4)$ angles.

The two long $\mathrm{Zn}-\mathrm{N}$ bonds are nearly collinear $[\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(3)=177 \cdot 8, \mathrm{~N}(2)-\mathrm{Zn}-\mathrm{N}(4)=103 \cdot 5$, $\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(2)=56.5^{\circ} \mathrm{l}$, and the overall chromophore stereochemistry of (2) is best described as cis-distorted octahedral. This differs from the stereochemistry of the $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore of (3) in that the $\mathrm{Zn}-\mathrm{N}$ distances in the $\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(3)$ direction are significantly longer than the in-plane $\mathrm{Zn}-\mathrm{N}(2)$ and $\mathrm{Zn}-\mathrm{N}(4)$ distances (Table 6). The relative elongation of the $\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(3)$ direction of the $\mathrm{ZnN}_{4} \mathrm{O}_{2}$ chromophore of (2) is typical of other cis-distorted rhombic-octahedral $\mathrm{Zn}^{\mathrm{II}}$ complexes containing a $\mathrm{ZnN}_{4} \mathrm{O}_{2}$ chromophore, e.g. [Zn(bipyam) $\left.{ }_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}$ (11) and $\left.[\mathrm{Zn} \text { (bipyam) })_{2}\left(\mathrm{ONO}_{2}\right)\right] \mathrm{NO}_{3}$ (12) (Walsh, Power \& Hathaway, 1981) (Table 6). In (2) the nitrito group is almost symmetrically coordinated as neither the $\mathrm{Zn}-\mathrm{O}$ distances, 2.217 (8) and 2.223 (9) \AA, nor the $\mathrm{N}-\mathrm{O}$ distances, 1.278 and $1.227 \AA$, are significantly different, although there is no crystallographic C_{2} symmetry present.

Probably the most significant feature of the structure of the $\mathrm{ZnN}_{4} \mathrm{O}_{2}$ chromophore of (2) is its similarity to that of the $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore in (3) (Table 6), especially the cis distortion, which in $\mathrm{Cu}^{\mathrm{II}}$ could originate in the non-spherical symmetry of the $\mathrm{Cu}^{\mathrm{II}}$ ion with a d^{9} configuration. In the $\mathrm{Zn}^{1 I}$ chromophore the distortion cannot originate from this source as the $\mathrm{Zn}^{\mathrm{II}}$ ion with a d^{10} configuration has spherical symmetry. Consequently, the cause of the Zn distortion must originate from the normal modes of vibration of a parent tris(chelate)zinc(II) complex, Fig. 4(IB). In the $\left[\mathrm{Zn}(\text { chelate })_{2}(\mathrm{ONO})\right] Y$ complex the C_{2} distortion of mode ($\mathrm{I} B$) is enhanced by the presence of a nonequivalent ONO chelate ligand which determines the ground-state structure of the $\mathrm{ZnN}_{4} \mathrm{O}_{2}$ chromophore with bond-length distortions of $0 \cdot 1-0 \cdot 2 \AA$. As this magnitude of distortion in the $\mathrm{Zn}^{1 I}$ chromophore is only slightly less than that of $0 \cdot 1-0 \cdot 3 \AA$ in the $\mathrm{Cu}^{\text {II }}$ chromophore it lends added support to the earlier suggestion (Proctor, Hathaway, Billing, Dudley \& Nicholls, 1969) that the cis distortion of the $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore in (3) also arises from a linear combination of the E modes of vibration of the parent tris(chelate)copper(II) complex, Fig. 4 (I B, II B). The observed differences in the Cu and $\mathrm{Zn} M-\mathrm{N}(1)$ and $M-\mathrm{N}(2)$ bond distances of $c a 0 \cdot 1 \AA$ can then be rationalized in terms of the non-spherical symmetry of
the $\mathrm{Cu}^{\text {II }}$ ion, d^{9} configuration (oblate ellipsoid), and the spherical symmetry of the Zn^{11} ion, d^{10} configuration (Hathaway \& Billing, 1970).

The pyridine rings in each of the bpy ligands are reasonably coplanar (Table 4) with dihedral angles of 12.94 and 12.90° for the $\mathrm{N}(1) / \mathrm{N}(2)$ and $\mathrm{N}(3) / \mathrm{N}(4)$ ligands respectively, a difference that is consistent with the near bonding equivalence of the two bpy ligands and with the small differences in the $\mathrm{Zn}-\mathrm{N}$ bonding distances.

The authors acknowledge the award of Department of Education Grants (to AW and BW), help in data collection for (1) by Drs P. G. Owston, M. McPartlin and K. Henrick (The Polytechnic of North London, Holloway), and for (2) by Dr S. Cameron (The University of Coleraine, Ulster), the Computer Bureau, UCC, for computing facilities, Drs G. Sheldrick, S. Motherwell and R. Taylor (Cambridge University) for the use of their programs, and the Microanalytical Section, UCC, for microanalysis.

References

Addison, C. C., Logan, N., Wallwork, S. C. \& Garner, C. D. (1971). Q. Rev. Chem. Soc. 25, 289-322.

Anderson, O. P. (1972). J. Chem. Soc. Dalton Trans. pp. 2597-2601.
Barclay, G. A., Hoskins, B. F. \& Kennard, C. H. L. (1963). J. Chem. Soc. pp. 5691-5699.

Berry, S. (1960). J. Chem. Phys. 32, 933-935.
Chen, H. A. \& Fackler, J. P. (1980). Private communication.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Duggan, M., Ray, N., Hathaway, B. J., Tomlinson, A. A. G., Brint, P. \& Pelin, K. (1979). J. Chem. Soc. Dalton Trans. pp. 1342-1347.
Elliott, H., Hathaway, B. J. \& Slade, R. C. (1966). J. Chem. Soc. A, pp. 1443-1445.
Ferrari, M. B., Fava, G. G. \& Pelizzi, C. (1977). J. Chem. Soc. Chem. Commun. pp. 8-9.
Fitzgerald, W. \& Hathaway, B. J. (1980). J. Chem. Soc. Dalton Trans. pp. 567-574.
Gazo, J., Bersuker, I. B., Garaj, J., Kabesova, M., Kohout, J., Langfelderova, H., Melnik, M., Serator, M. \& Valach, F. (1976). Coord. Chem. Rev. 11, 253-297.
Harrison, W. D. \& Hathaway, B. J. (1978). Acta Cryst. B34, 2843-2845.
Harrison, W. D. \& Hathaway, B. J. (1979). Acta Cryst. B35, 2910-2913.
Harrison, W. D. \& Hathaway, B. J. (1980). Acta Cryst. B36, 1069-1074.
Harrison, W. D., Hathaway, B. J. \& Kennedy, D. (1979). Acta Cryst. B35, 2301-2306.

Hathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49-69.

Hathaway, B. J. \& Billing, D. E. (1970). Coord. Chem. Rev. 5, 143-207.
Hathaway, B. J. \& Hodgson, P. G. (1973). J. Inorg. Nucl. Chem. 35, 4071-4081.
Hathaway, B. J. \& Murphy, A. (1980). Acta Cryst. B36, 295-299.
hathaway, B. J., Proctor, I. M., Slade, R. C. \& Tomlinson, A. A. G. (1969). J. Chem. Soc. A, pp. 2219-2224.
Hathaway, B. J., Ray, N. J., Kennedy, D. M., O’Brien, N. \& Murphy, B. (1980). Acta Cryst. B36, 1371-1377.

Huq, F. \& Skapski, A. C. (1971). J. Chem. Soc. A, pp. 1927-1931.
Kaiser, J., Brauer, G., Schroder, F. A., Taylor, F. \& Rasmussen, S. E. (1974). J. Chem. Soc. Dalton Trans. pp. 1490-1493.
Kasempimolporn, V. Tyagi, S. \& Hathaway, B. J. (1980). Unpublished data.

Kennedy, D. M., Ray, N. J., Sheahan, R., Power, M. \& Hathaway, B. J. (1980). Unpublished data.
Nakal, H. (1971). Bull. Chem. Soc. Jpn, 44, 2412-2415.
Nardin, G., Randaccio, L., Bonomo, R. \& Pizzarelli, E. (1980). J. Chem. Soc. Dalton Trans. pp. 369-375.

Power, P. C. \& Hathaway, B. J. (1980). Unpublished data.
Proctor, I. M., Hathaway, B. J., Billing, D. E., Dudley, R. J. \& Nicholls, P. (1969). J. Chem. Soc. A, pp. 1192-1197.

Proctor, I. M., Hathaway, B. J. \& Nicholls, P. (1968). J. Chem. Soc. A, pp. 1678-1684.

Proctor, I. M. \& Stephens, F. S. (1969). J. Chem. Soc. A, pp. 1248-1255.
Ray, N. J., Hulett, L., Sheahan, R. \& Hathaway, B. J. (1978). Inorg. Nucl. Chem. Lett. 14, 305-308.

Sheldrick, G. M. (1976). SHELX 76. A program for crystal structure determination. Univ. of Cambridge, England.
Simmons, C. J., Lundeen, M., Payne, P. W., Seff, K. \& Hathaway, B. J. (1980). Inorg. Chem. Submitted.
Simmons, C. J., Seff, K., Clifford, F. \& Hathaway, B. J. (1980). Acta Cryst. Submitted.

Stephens, F. S. (1969). J. Chem. Soc. Dalton Trans. pp. 883-890, 1248-1255, 2081-2087.
Stephens, F. S. \& Tucker, P. A. (1973). J. Chem. Soc. Dalton Trans. pp. 2293-2297.
Stynes, H. C. \& Ibers, J. A. (1971). Inorg. Chem. 10, 2304-2308.
Sutton, L. E. (1959). Spec. Publ. No. 11. London: The Chemical Society.
Sutton, L. E. (1965). Spec. Publ. No. 18. London: The Chemical Society.
Walsh, B., Power, P. C. \& Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. To be published.

Bis(1,2-diaminoethan)-1,6-diiodoplatin(IV) Diiodid Dihydrat, 1,6-[Pt(en) $\left.\mathbf{I}_{2} \mathbf{I}_{\mathbf{2}}\right] \mathrm{II}_{2} \cdot \mathbf{2} \mathrm{H}_{\mathbf{2}} \mathbf{O}$

Von Bernhard Freckmann und Karl-Friedrich Tebbe
Institut für Anorganische Chemie der Universität zu Köln, Greinstrasse 6, D-5000 Köln 41, Bundesrepublik Deutschland

(Eingegangen am 12. November 1980; angenommen am 6. Februar 1981)

Abstract

$\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2} \mathrm{I}_{2}\right] \mathrm{I}_{2} .2 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{C}_{4} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{Pt}^{2+} .2 \mathrm{I}^{-} .2 \mathrm{H}_{2} \mathrm{O}$, is triclinic, $P 1$, with $a=7 \cdot 151$ (5), $b=7.729$ (5), $c=8.331$ (7) $\AA, \quad \alpha=111.80(8), \quad \beta=96.28$ (7), $\gamma=98.09(6)^{\circ}, V=426.1 \AA^{3}, D_{c}=3.36 \mathrm{Mg} \mathrm{m}^{-3}$, $Z=1$. The compound may be prepared in solution by oxidative addition of I_{2} to $\left[\mathrm{Pt}(\mathrm{en})_{2}\right] \mathrm{I}_{2}$. The structure has been solved by Patterson and Fourier methods from diffractometer data and refined by fullmatrix least squares to $R=0.034$ for 1452 independent reflections. The structure can be interpreted in terms of nearly tetragonal bipyramidal complexes $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{I}_{2}\right]^{2+}$ and I^{-}ions. The I^{-}ions are at a rather short distance ($3.905 \AA$) from the coordinated I atoms and the I \cdots I groups are perpendicular to the $\left[\mathrm{Pt}(\mathrm{en})_{2}\right]$ moiety to give linear units I $\cdots \mathrm{I}-\mathrm{Pt}-\mathrm{I} \cdots \mathrm{I}$. These small units are arranged nearly in the [111] direction. The

slightly disordered water molecules fill cages in this arrangement.

Einleitung

Bei unseren systematischen chemischen und strukturellen Untersuchungen an Polyiodiden komplexer Kationen (Tebbe, 1977, 1978) konnten wir einen Verbindungstyp $\left[M(e n)_{2} \mathrm{I}_{6}\right]$ näher charakterisieren (bisher mit $M=\mathrm{Ni}^{2+}, \mathrm{Pd}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}$; en $=$ 1,2-Diaminoethan), dessen einzelne Vertreter strukturverwandt sind, sich aus einer einfachen hexagonalen Säulenpackung herleiten lassen und bedingt durch die unterschiedlichen geometrischen und zusätzlichen koordinativen Eigenschaften der Komplexe $\left[M(\mathrm{en})_{2}\right]^{2+}$ geordnete Triiodid- $(\cdots I-I-I \cdots)_{\infty}$ und gestreckte oder gewinkelte Iod-Iodid-Ketten $(\cdots I-I \cdots I \cdots)_{\infty}$ in verschiedenen Varianten enthalten (Düker, Freckmann, © 1981 International Union of Crystallography

[^0]: \dagger To whom correspondence should be addressed.

[^1]: * $X: \mathrm{Cu}$ in (1) and Zn in (2).

[^2]: * Lists of structure factors, anisotropic thermal parameters and H atom coordinates for both compounds have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35904 (35 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

